skip to main content


Search for: All records

Creators/Authors contains: "Schmidt, Steven K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mauro Guglielmin (Ed.)
    ABSTRACT

    Accelerated climate warming is causing significant reductions in the volume of Arctic glaciers, such that previously ice‐capped bare ground is uncovered, harboring soil development. Monitoring the thermal and hydrologic characteristics of soils, which strongly affect microbial activity, is important to understand the evolution of emerging terrestrial landscapes. We instrumented two sites on the forefield of a retreating Svalbard glacier, representing sediment ages of approximately 5 and 60 years since exposure. Our instrumentation included an ERT array complemented by adjacent point sensor measurements of subsurface temperature and water content. Sediments were sampled at each location and at two more additional sites (120 and 2000 years old) along a chronosequence aligned with the direction of glacial retreat. Analysis suggests older sediments have a lower bulk density and contain fewer large minerals, which we interpret to be indicative of sediment reworking over time. Two months of monitoring data recorded during summer 2021 indicate that the 60‐year‐old sediments are stratified showing more spatially consistent changes in electrical resistivity, whereas the younger sediments show a more irregular structure, with consequences on heat and moisture conductibility. Furthermore, our sensors reveal that young sediments have a higher moisture content, but a lower moisture content variability.

     
    more » « less
    Free, publicly-accessible full text available March 13, 2025
  2. Background and Aims Human-driven nitrogen (N) deposition can alter soil biogeochemistry and plant communities, both critical to soil biota. However, understanding the relative impact of the relationship between nutrient resources and plants on soil communities has been hindered by a lack of experimental manipulations of both factors. We hypothesized that soil nematode communities would be structured predominantly by N addition via overall increased abundance, decreased diversity, and compositional shifts to dominance of r-selected bacterial-feeding nematodes. In contrast, we expected plant efects to be less evident and restricted to nematodes directly associated with plants. Methods We used a long-term (18-yrs) experiment in moist meadow alpine tundra involving N addition and codominant plant (nitrophilic Deschampsia cespitosa and nitrogen sensitive Geum rossii) removal. We characterized nematode communities via 18S rRNA metabarcoding and used soil biogeochemistry, plant, and microbial variables to determine factors shaping their communities. Results The N addition treatment increased overall nematode abundance, decreased diversity, and afected the composition of all nematode trophic groups. Overall, nematode communities shifted to dominance of bacterial feeding nematode taxa adapted to N-enriched environments. The likely drivers of this shift were increased soil nitrate and lower pH. The direct efects of codominant plants were more limited, with only changes in Geum rossii appearing to afect nematode responses. Conclusion Overall, nematode communities in N-limited alpine ecosystems are highly sensitive to increases in N availability, irrespective of the nature of N preferences of codominant plants. The resulting nematode community restructuring could signify future shifts in soil functioning throughout alpine landscapes. 
    more » « less
    Free, publicly-accessible full text available October 13, 2024
  3. Abstract

    Bacterial and fungal root endophytes can impact the fitness of their host plants, but the relative importance of drivers for root endophyte communities is not well known. Host plant species, the composition and density of the surrounding plants, space, and abiotic drivers could significantly affect bacterial and fungal root endophyte communities. We investigated their influence in endophyte communities of alpine plants across a harsh high mountain landscape using high-throughput sequencing. There was less compositional overlap between fungal than bacterial root endophyte communities, with four ‘cosmopolitan’ bacterial OTUs found in every root sampled, but no fungal OTUs found across all samples. We found that host plant species, which included nine species from three families, explained the greatest variation in root endophyte composition for both bacterial and fungal communities. We detected similar levels of variation explained by plant neighborhood, space, and abiotic drivers on both communities, but the plant neighborhood explained less variation in fungal endophytes than expected. Overall, these findings suggest a more cosmopolitan distribution of bacterial OTUs compared to fungal OTUs, a structuring role of the plant host species for both communities, and largely similar effects of the plant neighborhood, abiotic drivers, and space on both communities.

     
    more » « less
  4. Abstract

    Recent work examining nematode and tardigrade gut microbiomes has identified species-specific relationships between host and gut community composition. However, only a handful of species from either phylum have been examined. How microbiomes differ among species and what factors contribute to their assembly remains unexplored. Cyanobacterial mats within Antarctic Dry Valley streams host a simple and tractable natural ecosystem of identifiable microinvertebrates to address these questions. We sampled 2 types of coexisting mats (i.e., black and orange) across four spatially isolated streams, hand-picked single individuals of two nematode species (i.e.,Eudorylaimus antarcticusandPlectus murrayi) and tardigrades, to examine their gut microbiomes using 16S and 18S rRNA metabarcoding. All gut microbiomes (bacterial and eukaryotic) were significantly less diverse than the mats they were isolated from. In contrast to mats, microinvertebrates’ guts were depleted of Cyanobacteria and differentially enriched in taxa of Bacteroidetes, Proteobacteria, and Fungi. Among factors investigated, gut microbiome composition was most influenced by host identity while environmental factors (e.g., mats and streams) were less important. The importance of host identity in predicting gut microbiome composition suggests functional value to the host, similar to other organisms with strong host selected microbiomes.

     
    more » « less
  5. null (Ed.)